Minggu, 19 Februari 2012

IBADAH HAJI

he Qibla—the direction that Muslims turn to in their prayers (salah)—is toward the Kaaba and symbolizes unity in worshiping one Allah (God). At one point the direction of the Qibla was toward Bayt al-Maqdis (Jerusalem) (and is therefore called the First of the Two Qiblas),[citation needed] however, this only lasted for seventeen months, after which the Qibla became oriented towards the Kaaba in Mecca. According to accounts from Muhammad's companions, the change happened very suddenly during the noon prayer at Medina in the Masjid al-Qiblatain.

[edit] Pilgrimage


Pilgrims circumambulating the Kaaba.
The Haram is the focal point of the Hajj and Umrah pilgrimages[5] that occur in the month of Dhu al-Hijjah in the Islamic calendar and at any time of the year, respectively. The Hajj pilgrimage is one of the Five Pillars of Islam, required of all able-bodied Muslims who can afford the trip. In recent times, about 3 million Muslims perform the Hajj every year.
Some of the rituals performed by pilgrims are symbolic of historical incidents. For example, the episode of Hagar's search for water is emulated by Muslims as they run between the two hills of Safa and Marwah whenever they visit Mecca.
The Hajj is associated with the life of the Islamic prophet Muhammad from the 7th century, but the ritual of pilgrimage to Mecca is considered by Muslims to stretch back thousands of years to the time of Ibrahim (Abraham).

AL-QUR'AN

Islamic tradition relates that Muhammad received his first revelation in the Cave of Hira during one of his isolated retreats to the mountains. Thereafter, he received revelations over a period of twenty-three years. According to hadith and Muslim history, after Muhammad emigrated to Medina and formed an independent Muslim community, he ordered a considerable number of the sahabah to recite the Quran and to learn and teach the laws, which were revealed daily. Companions who engaged in the recitation of the Quran were called Qari. Since most sahabah were unable to read or write, they were ordered to learn from the prisoners-of-war the simple writing of the time. Thus a group of sahabah gradually became literate. As it was initially spoken, the Quran was recorded on tablets, bones and the wide, flat ends of date palm fronds. Most chapters were in use amongst early Muslims since they are mentioned in numerous sayings by both Sunni and Shia sources, relating Muhammad's use of the Quran as a call to Islam, the making of prayer and the manner of recitation. However, the Quran did not exist in book form at the time of Muhammad's death in 632.[35][36]
Sahih Bukhari narrates Muhammad describing the revelations as, "Sometimes it is (revealed) like the ringing of a bell" and Aisha reported, "I saw the Prophet being inspired Divinely on a very cold day and noticed the sweat dropping from his forehead (as the Inspiration was over)".[37] The Islamic studies scholar Welch states in the Encyclopaedia of Islam that he believes the graphic descriptions of Muhammad's condition at these moments may be regarded as genuine, because he was severely disturbed after these revelations. According to Welch, these seizures would have been seen by those around him as convincing evidence for the superhuman origin of Muhammad's inspirations. However, Muhammad's critics accused him of being a possessed man, a soothsayer or a magician since his experiences were similar to those claimed by such figures well known in ancient Arabia. Welch additionally states that it remains uncertain whether these experiences occurred before or after Muhammad's initial claim of prophethood.[38]
The Quran states that Muhammad was ummi,[39] interpreted as illiterate in Muslim tradition. According to Watt, the meaning of the Quranic term ummi is unscriptured rather than illiterate.

Compiling the Mus'haf


Quran manuscript from the 7th century CE, written on vellum in the Hijazi script.
According to Shias, Sufis and scarce Sunni scholars, Ali compiled a complete version of the Quran mus'haf[1] immediately after Muhammad's death. The order of this mus'haf differed from that gathered later during Uthman's era. Despite this, Ali made no objection or resistance against standardized mus'haf, but kept his own book.[35][40]
After seventy reciters were killed in the Battle of Yamama, the caliph Abu Bakr decided to collect the different chapters and verses into one volume. Thus, a group of reciters, including Zayd ibn Thabit, collected the chapters and verses and produced several hand-written copies of the complete book.[35][41]

9th century Quran manuscript.
In about 650, as Islam expanded beyond the Arabian peninsula into Persia, the Levant and North Africa, the third caliph Uthman ibn Affan ordered the preparation of an official, standardized version, to preserve the sanctity of the text (and perhaps to keep the Rashidun Empire united, see Uthman Qur'an). Five reciters from amongst the companions produced a unique text from the first volume, which had been prepared on the orders of Abu Bakr and was kept with Hafsa bint Umar. The other copies already in the hands of Muslims in other areas were collected and sent to Medina where, on orders of the Caliph, they were destroyed by burning or boiling. This remains the authoritative text of the Quran to this day.[35][42][43]
The Quran in its present form is generally considered by academic scholars to record the words spoken by Muhammad because the search for variants in Western academia has not yielded any differences of great significance. Historically, controversy over the Quran's content has rarely become an issue, although debates continue on th

PENGERTIAN ISLAM

“ " Pada suatu hari, Rasulullah saw. muncul di antara kaum muslimin.
Lalu datang seorang laki-laki dan bertanya: Wahai Rasulullah, apakah Iman itu?
Rasulullah saw. menjawab: Engkau beriman kepada Allah, malaikat-malaikat-Nya, kitab-kitab-Nya, pertemuan dengan-Nya, rasul-rasul-Nya dan kepada hari berbangkit.
Orang itu bertanya lagi: Wahai Rasulullah, apakah Islam itu?
Rasulullah saw. menjawab: Islam adalah engkau beribadah kepada Allah dan tidak menyekutukan-Nya dengan apa pun, mendirikan solat fardu, menunaikan zakat wajib dan berpuasa di bulan Ramadan.
Orang itu kembali bertanya: Wahai Rasulullah, apakah Ihsan itu?
Rasulullah saw. menjawab: Engkau beribadah kepada Allah seolah-olah engkau melihat-Nya. Dan jika engkau tidak melihat-Nya, maka sesungguhnya Dia selalu melihatmu.
Orang itu bertanya lagi: Wahai Rasulullah, kapankah hari kiamat itu?
Rasulullah saw. menjawab: Orang yang ditanya mengenai masalah ini tidak lebih tahu dari orang yang bertanya. Tetapi akan aku ceritakan tanda-tandanya; Apabila budak perempuan melahirkan anak tuannya, maka itulah satu di antara tandanya. Apabila orang yang miskin papa menjadi pemimpin manusia, maka itu tarmasuk di antara tandanya. Apabila para penggembala domba saling bermegah-megahan dengan gedung. Itulah sebagian dari tanda-tandanya yang lima, yang hanya diketahui oleh Allah.
Kemudian Rasulullah saw. membaca firman Allah Taala: Sesungguhnya Allah, hanya pada sisi-Nya sajalah pengetahuan tentang Hari Kiamat; dan Dia-lah Yang menurunkan hujan, dan mengetahui apa yang ada dalam rahim. Dan tiada seorang pun yang dapat mengetahui (dengan pasti) apa yang akan diusahakannya besok. Dan tiada seorang pun yang dapat mengetahui di bumi mana ia akan mati. Sesungguhnya Allah Maha Mengetahui lagi Maha Mengenal.
Kemudian orang itu berlalu, maka Rasulullah saw. bersabda: Panggillah ia kembali! Para sahabat beranjak hendak memanggilnya, tetapi mereka tidak melihat seorang pun. Rasulullah saw. bersabda: Ia adalah Jibril, ia datang untuk mengajarkan manusia masalah agama mereka. (Kitab Sahih Muslim [Bahasa Arab saja]:

KALIMAT SYAHADAT

Rencana utama: Syahadah
Mengucap dua kalimah syahadah iaitu setelah mengucap 2 kalimah Syahadah fardhu untuk menyampaikan/mendakwahkan Kalimah Syahadah Kepada yang belum menerima Kalimah(belum Islam) dan sesama Islam diingatkan tentang maksud Kalimah dan diajak mentaati perintah Allah iaitu 5 Rukun Amal Islam. Amalan disebut di dalam Quran sebagai amar makruf nahi Munkar, iaitu mengajak manusia kepada Kebaikan utama iaitu mengucapkan Kalimah Syahadah ini dan mencegah kemunkaran iaitu manusia tidak mengaku Tiada Tuhan selain Allah dan Muhammad saw Pesuruh Allah. Hukum Fardhu Ain kepada semua manusia yang telah mengucapkan Kalimah Syahadah untuk mendakwahkannya dan Fardhu Kifayah secara berjemaah bermula di setiap Masjid.

Kalimah Syahadah



Tiada Tuhan Melainkan Allah;
Muhammad Itu Pesuruh Allah.


"Allah menerangkan (kepada sekalian makhlukNya dengan dalil-dalil dan bukti), bahawasanya tiada Tuhan (yang berhak disembah) melainkan Dia, Yang sentiasa mentadbirkan (seluruh alam) dengan keadilan dan malaikat-malaikat serta orang-orang yang berilmu (mengakui dan menegaskan juga yang demikian); tiada Tuhan (yang berhak disembah) melainkan Dia; Yang Maha Kuasa, lagi Maha Bijaksana." (Surah Ali ‘Imran : 18)[1]

T.ROBOT

Kata “robot” diambil dari bahasa Ceko (Chech), yang memiliki arti “pekerja” (worker). Robot merupakan suatu perangkat mekanik yang mampu menjalankan tugas-tugas fisik, baik di bawah kendali dan pengawasan manusia, ataupun yang dijalankan dengan serangkaian program yang telah didefinisikan terlebih dahulu atau kecerdasan buatan (artificial intelligence).
Jika sebelumnya robot hanya dioperasikan di laboratorium ataupun dimanfaatkan untuk kepentingan industri, di negara-negara maju perkembangan robot mengalami peningkatan yang tajam, saat ini robot telah digunakan sebagai alat untuk membantu pekerjaan manusia. Seiring dengan berkembangnya teknologi, khususnya teknologi elektronik, peran robot menjadi semakin penting tidak saja dibidang sains, tapi juga di berbagai bidang lainnya, seperti di bidang kedokteran, pertanian, bahkan militer. Secara sadar atau tidak, saat ini robot telah “masuk” dalam kehidupan manusia sehari-hari dalam berbagai bentuk dan jenis. Ada jenis robot sederhana yang dirancang untuk melakukan kegiatan yang sederhana, mudah dan berulang-ulang, ataupun robot yang diciptakan khusus untuk melakukan sesuatu yang rumit, sehingga dapat berperilaku sangat kompleks dan secara otomatis dapat mengontrol dirinya sendiri sampai batas tertentu.

Daftar isi

 [sembunyikan

[sunting] Evolusi Robot Indonesia

Sejauh ini, belum ada data yang dapat memberikan kepastian mengenai kapan robot, sebagai teknologi, mulai dikembangkan di Indonesia. Namun mulai tahun 80-an, kebijakan nasional dalam pengembangan riset teknologi telah memberikan dukungan pada litbang permesinan otomatis dalam rangka mencermati dan menunjang Sumber Daya Manusia Indonesia yang memiliki minat dan kemampuan untuk menguasai teknologi robot. Salah satu wujud konkretnya adalah dikembangkannya sejumlah laboratorium, seperti MEPPO (Mesin Perkakas Teknik Produksi dan Otomatis) yang diprakarsai oleh BPPT bekerjasama dengan ITB, Industri strategis, serta LET (Laboratorium Elektronika Terapan) di LIPI.
Sejak dikembangkannya sejumlah laboratorium tersebut, beraneka macam permesinan otomatis / robot telah berhasil dikembangkan, diproduksi, serta dikomersilkan oleh berbagai industri, baik industri strategis maupun industri lainnya di Indonesia. Bahkan dalam pengembangan robot terbaru saat ini, telah dikembangkan jenis robot yang memiliki kemampuan untuk mengontrol seluruh sistem operasi suatu pabrik.
Sejak tahun 80an, pendayagunaan dan pemanfaatan permesinan otomatis telah dilakukan terutama melalui sejumlah industri strategis, di antaranya: PT PINDAD (sistem, peralatan, dll.), PT LEN Industri (IT, perangkat lunak, komputasi), PT Bharata dan PTBBI (pengecoran presisi untuk membuat bagian-bagian mesin), dll. Di samping itu, PT DI dan PT PAL, yang merupakan pengguna mesin otomatis, telah menguasai pengetahuan mengenai operasionalisasi robot untuk teknologi pesawat terbang dan teknologi perkapalan.
Kontes Robot Indonesia pertama kali diselenggarakan oleh Depdiknas tahun 1990. Sebelas tahun berikutnya, tepatnya pada tahun 2001, salah satu perwakilan dari Indonesia, yaitu tim B-Cak dari PENS-ITS telah berhasil mencapai prestasi yang spektakuler, yakni dengan keluar sebagai Juara Pertama pada Asia Pasific Broadcasting (ABU) Robocon yang diselenggarakan di Tokyo.
Pada tahun 2001 juga, Kementerian Ristek bersama dengan Depdiknas telah mempromosikan juara Kontes Robot Indonesia dalam pameran Ristek tahunan yaitu RITECH EXPO (Research, Inovation, Technology Expo) yang diselenggarakan di Balai Sidang Jakarta. Dalam pameran tersebut terlihat respon positif dan antusiasme dari masyarakat.
Menjelang Kontes Robot Indonesia 2004, Kementerian Ristek bekerjasama dengan Departemen Pendidikan Nasional - Fakultas Teknik Universitas Indonesia telah menyelenggarakan semiloka (seminar dan lokakarya) dengan tema "Peluang dan Tantangan Teknologi Robot di Indonesia". Semiloka ini diselenggarakan dengan tujuan mempertemukan pihak-pihak yang berkepentingan dalam rangka pengembangan teknologi robot, agar para stakeholders tersebut dapat saling berbagi informasi terbaru dan berbagi pemahaman mengenai isu-isu teknologi robot yang sedang berkembang saat itu. Sasaran yang ingin di capai dengan semiloka ini adalah terdifusinya teknologi robot ke kalangan masyarakat yang lebih luas. Yang menjadi sasaran dalam semiloka tersebut adalah difusi teknologi robot pada kalangan masyarakat yang lebih luas. Dengan diselenggarakannya seminar ini, diharapkan kalangan mahasiswa dapat memperoleh informasi mengenai kebijakan-kebijakan yang telah ditetapkan pemerintah serta kebutuhan industri dalam pemanfaatan dan pendayagunaan robot. Di sisi lain, pihak industri bisa mendapatkan informasi dan gambaran mengenai pemanfaatan dan pendayagunaan robot untuk keperluan dan kepentingan industry, serta prospek dan kemampuan yang para mahasiswa dalam mengembangkan teknologi robot

[sunting] Ketika Mobil Robot LIPI (MOROLIPI) Beraksi

Salah satu langkah untuk mencegah terjadinya ledakan bom adalah menjinakkan bom tersebut sebelum meledak. Namun menjinakkan bom merupakan salah satu pekerjaan yang memiliki risiko tinggi, karena bom tersebut dapat meledak kapan saja. Untuk mengurangi risiko jatuhnya korban jiwa dalam upaya menjinakkan bom, diperlukan sebuah security robot yang dapat menggantikan tugas manusia.
Selama ini upaya ”penjinakan” bom di Indonesia lebih banyak mengandalkan keahlian manusia, meski dalam beberapa kasus, ancaman bom dapat dipatahkan dengan menggunakan detector maupun alat penjinak bom.
Selama kurang lebih sepuluh tahun terakhir ini beberapa lembaga riset nasional mulai mengembangkan sistem detektor dan robot penjinak bom. Di antaranya Badan Tenaga Nuklir Nasional (Batan), yang telah mengembangkan sistem analisis bahan eksplosif, bahkan narkoba dengan cara mengaktifkan neutron cepat menggunakan generator neutron.
Generator neutron telah dikembangkan di Pusat Teknologi Akselerator dan Proses Bahan Batan sejak tahun 1998. Pendeteksian bahan eksplosif dilakukan dengan cara memancarkan berkas neutron yang telah diaktivasi ke obyek, misalnya, kontainer yang berisi bahan eksplosif.
Dari spektrum sinar gamma yang timbul, dapat diketahui isi kontainer tersebut. Karena bahan peledak terdiri dari unsur H, C, N, dan O dalam komposisi tertentu, maka melalui spektrum sinar unsur-unsur tersebut dapat terbaca.
Penanganan bom dan/atau bahan peledak juga dapat dilakukan dengan menggunakan robot. Sebagaimana yang telah dikembangkan oleh Endra Pitowarno dari Politeknik Elektronika Negeri, Surabaya Institut Teknologi 10 Nopember, yang telah menghasilkan tiga generasi robot penjinak bom sejak 2003.
Belakangan, dikembangkan robot untuk menekan risiko tersebut. Sebenarnya penggunaan robot semacam itu oleh pasukan penjinak bahan peledak atau Tim Gegana Polri sudah dilakukan sejak lama. Sayangnya, robot-robot yang digunakan masih produk impor, antara lain berasal dari Israel dan Inggris.
Pemanfaatan security robot semacam itu yang paling menghebohkan akhir-akhir ini tentu saja terjadi ketika penggerebekan teroris di Dusun Beji, Kedu, Temanggung, Jawa Tengah. Robot penjinak bom tersebut berjalan perlahan melintasi halaman dan menyelinap ke dalam rumah target. Robot ini mampu mengambil gambar, video bahkan memindahkan benda. Dengan pergerakannya membopong kamera, robot ini memuluskan langkah polisi dalam membekuk orang yang bersembunyi dalam rumah di tengah ladang jagung yang berhawa dingin tersebut, yang diduga sebagai mastermind dari serangkaian tindakan terror yang terjadi di Indonesia selama satu dekade terakhir (termasuk terror bom yang terjadi di Hotel The Ritz-Carlton dan JW Marriott, kawasan Mega kuningan, Jakarta 17 Juli lalu).
Robot yang digunakan ketika itu didatangkan khusus dari Israel dengan harga yang cukup tinggi, harga per unitnya bisa mencapai 1 Milyar Rupiah. Namun demikian, sebenarnya Estiko Rijanto, seorang peneliti mekatronika dan sistem kontrol di Pusat Penelitian Tenaga Listrik dan Mekatronik, Lembaga Ilmu Pengetahuan Indonesia (LIPI), telah berhasil menemukan dan merakit robot penjinak bom, yang diperkenalkannya pada tahun 2006. Robot pengintai tersebut diberi nama Morolipi v1.0, mobil robot penjinak bom yang dikembangkan oleh LIPI (Lembaga Ilmu Pengetahuan Indonesia). Prototipe Morolipi yang telah dipatenkan itu desain awalnya dirancang pada tahun 2004 yang kemudian dilanjutkan hingga tahun 2008. Namun demikian, menurut Menteri Riset dan Teknologi saat itu, Kusmayanto Kadiman, robot tersebut mungkin belum bisa digunakan karena masih tahap pengembangan.
Morolipi adalah unit mobil robot berlengan penjepit yang memiliki kemampuan memotong putus kabel yang juga robotik. Dalam uji coba menjinakkan bahan peledak, Morolipi terbukti dapat bekerja efektif, yaitu memotong rangkaian kabel berukuran diameter 2 mm yang dapat memicu ledakan sehingga bahan peledak nonaktif.

Kamis, 16 Februari 2012

T,PEMBANGKIT LISTRIK TENAGA ANGIN

Angin adalah salah satu bentuk energi yang tersedia di alam, Pembangkit Listrik Tenaga Angin mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Cara kerjanya cukup sederhana, energi angin yang memutar turbin angin, diteruskan untuk memutar rotor pada generator dibagian belakang turbin angin, sehingga akan menghasilkan energi listrik. Energi Listrik ini biasanya akan disimpan kedalam baterai sebelum dapat dimanfaatkan. Secara sederhana sketsa kincir angin adalah sebagai berikut :

Indonesia, negara kepulauan yang 2/3 wilayahnya adalah lautan dan mempunyai garis pantai terpanjang di dunia yaitu ± 80.791,42 Km merupakan wilayah potensial untuk pengembangan pembanglit listrik tenaga angin, namun sayang potensi ini nampaknya belum dilirik oleh pemerintah. Sungguh ironis, disaat Indonesia menjadi tuan rumah konfrensi dunia mengenai pemanasan global di Nusa Dua, Bali pada akhir tahun 2007, pemerintah justru akan membangun pembangkit listrik berbahan bakar batubara yang merupakan penyebab nomor 1 pemanasan global.
Syarat – syarat dan kondisi angin yang dapat digunakan untuk menghasilkan energi listrik dapat dilihat pada tabel berikut.
Angin kelas 3 adalah batas minimum dan angin kelas 8 adalah batas maksimum energi angin yang dapat dimanfaatkan untuk menghasilkan energi listrik.
Pemanfaatan energi angin merupakan pemanfaatan energi terbarukan yang paling berkembang saat ini. Berdasarkan data dari WWEA (World Wind Energy Association), sampai dengan tahun 2007 perkiraan energi listrik yang dihasilkan oleh turbin angin mencapai 93.85 GigaWatts, menghasilkan lebih dari 1% dari total kelistrikan secara global. Amerika, Spanyol dan China merupakan negara terdepan dalam pemanfaatan energi angin. Diharapkan pada tahun 2010 total kapasitas pembangkit listrik tenaga angin secara glogal mencapai 170 GigaWatt.
Di tengah potensi angin melimpah di kawasan pesisir Indonesia, total kapasitas terpasang dalam sistem konversi energi angin saat ini kurang dari 800 kilowatt. Di seluruh Indonesia, lima unit kincir angin pembangkit berkapasitas masing-masing 80 kilowatt (kW) sudah dibangun. Tahun 2007, tujuh unit dengan kapasitas sama menyusul dibangun di empat lokasi, masing-masing di Pulau Selayar tiga unit, Sulawesi Utara dua unit, dan Nusa Penida, Bali, serta Bangka Belitung, masing-masing satu unit. Mengacu pada kebijakan energi nasional, maka pembangkit listrik tenaga bayu (PLTB) ditargetkan mencapai 250 megawatt (MW) pada tah

T.PEMBANGKIT LISTRIK TENAGA UAP

1317036351470788721
Hubungan yang erat antara penggunaan teknologi dan kerusakan lingkungan telah menyadarkan masyarakat untuk melakukan modifikasi dan inovasi dari teknologi yang ada saat ini. Penggunaan bahan bakar fosil, seperti batubara untuk pembangkit listrik akan dapat meningkatkan emisi partikel, SO2, NOx, dan CO2. Adanya peraturan pemerintah tentang standar emisi untuk pembangkit listrik di Indonesia, mendorong upaya untuk selalu mengurangi emisi tersebut.
Ketersediaan sumber energi dan adanya energi, terus dilakukan inovasi pada teknologi teknologi yang dapat mengubah sumber energi yang memproduksi, mengkonversi, menyalurkan, menjadi bentuk yang bermanfaat bagi masyarakat, dan menggunakan energi sehingga diperoleh merupakan salah satu faktor pemacu pertumbuhan teknologi yang lebih efisien dan ramah perekonomian dunia dan hal ini telah tercatat dalam lingkungan.
Batubara diperkirakan paling dominan digunakan sebagai bahan bakar untuk pembangkit listrik di masa datang. Penggunaan batubara dalam jumlah yang besar akan meningkatkan emisi gas buang di udara. Salah satu cara untuk mengurangi emisi adalah dengan menggunakan teknologi bersih. Ada dua cara dalam menerapkan teknologi tersebut, yaitu pertama diterapkan pada tahapan setelah pembakaran dan kedua diterapkan sebelum pembakaran batubara. Pada tahap pertama dapat digunakan teknologi denitrifikasi, desulfurisasi dan penggunaan electrostatic precipitator. Pada tahap kedua menggunakan teknologi fluidized bed combustion, gasifikasi batubara, dan magneto hydrodynamic
Agaknya telah jelas bahwa Indonesia memerlukan pembangkit-pembangkit listrik baru untuk memenuhi kenaikan kebutuhan listrik di masa yang akan datang. Di AS, untuk tahun 1990, Pembangkit Listrik Tenaga Nuklir (PLTN) dan Pembangkit Listrik Tenaga Uap Batubara (PLTU) diproyeksikan akan memegang masing-masing 12,5% dan 55% dari total pembangkitan listrik, suatu angka yang lebih besar dari kontribusi jenis-jenis sumber energi lain .
Dalam memperbandingkan kedua pilihan ini, perlu diingat bahwa masing-masing berasal dari teknologi yang berbeda, meskipun demikian keduanya menggunakan energi yang dihasilkannya untuk menguapkan air. Selanjutnya uap tersebut digunakan untuk memutar turbin. PLTN merupakan bidang yang cukup baru dibandingkan dengan PLTU. Hal ini perlu ditekankan mengingat Indonesia adalah negara yang sedang berkembang. Selain itu, karena pemakaian bahan-bahan radioaktif untuk PLTN, masalah-masalah yang dihadapi dan faktor-faktor pembentuk hambatan tersebut adalah dua lingkup yang berbeda yang kadang-kadang tidak dapat diperbandingkan secara langsung. Segi-segi polusi, biaya konstruksi, pemeliharaan, bahan bakar dan operasi serta keamanan dan keandalan sistem diambil sebagai pokok- pokok perbandingan dengan harapan masingmasing akan terwakili secara jelas dan menyeluruh.
Faktor Ekonomi
Secara umum, PLTN dapat digolongkan sebagai investasi dengan modal tinggi dan biaya tahunan yang rendah ( untuk bahan bakar, operasi dan pemeliharaan) atau disebut “high capital low annuities investment” sementara PLTU sebaliknya adalah sebuah investasi dengan ” low capital high annuities “. Ini sedikit banyak dapat dihubungkan dengan perbedaan waktu konstruksi : 5-6 tahun untuk PLTU dan 7-10 tahun untuk PLTN. Oleh karenanya, biaya pembangunan PLTN lebih sensitif terhadap perubahan desain dan teknologi reaktor, perubahan standar keamanan, harga bahan baku reaktor dan suku bunga pinjaman dari kapital yang dipakai. Menurut statistik, pembangunan PLTN cenderung untuk “overbudget”, dari hanya beberapa persen sampai sekitar dua kali lipat perkiraan biaya semula. Di lain pihak, PLTU lebih sensitif terhadap harga bahan bakar yang berubah-ubah sesuai dengan pasar yang ada meskipun biaya pembangunan tidak akan banyak beranjak dari yang semula diperkirakan. Untuk Indonesia, dimana penyediaan batubara untuk PLTU akan berasal dari perusahaan negara, faktor perubahan harga ini tidak akan sedrastis yang terjadi di pasar bebas.
Dari beberapa sumber yang dipakai untuk artikel ini diperoleh angka yang berbeda-beda untuk biaya rata-rata untuk kedua jenis pembangkit listrik ini, sehingga hanya dapat disimpulkan bahwa pada umumnya, terutama untuk negara-negara maju di Amerika Utara, Eropa Barat dan Asia, PLTN tergolong lebih murah dari PLTU untuk kapasitas listrik yang sama. Untuk negara-negara sedang berkembang yang masih harus mengimpor sebagian besar dari teknologi pembuatan reaktor tersebut, mungkin didapat angka yang berbeda untuk biaya pembuatan sebuah reaktor nuklir, tetapi sulit didapat data yang akurat untuk itu. Maka penulis hanya akan memberikan gambaran tentang angka-angka yang beriaku di negara-negara maju yang telah kami sebut di atas.
Maksud dari istilah biaya disini adalah rata-rata pertahun dari seturuh investasi yang dikeluarkan selama masa operasinya. Hanya saja untuk masa-masa mendatang harga sebuah PLTN akan mengalami tingkat kenaikan yang lebih tinggi daripada PLTU, terutama karena terdapatnya biaya de-commissioning (penutupan sebuah lokasi PLTN) yang tinggi. Oleh karena itu pada permulaan abad ke 21 nanti keduanya tidak akan berbeda jauh. Walaupun demikian harga PLTN tetap di bawah PLTU. Satu referensi mengungkapkan bahwa rendahnya harga PLTN tersebut dimungkinkan oleh adanya subsidi dari pemerintah setempat untuk memacu penggunaan teknologi baru ini. Tanpa subsidi tersebut, biaya sebuah PLTN mencapai 30-100% lebih mahal daripada PLTU. Tetapi teknologi maju yang didapat bisa dijadikan justifikasi untuk memilih teknologi tersebut meskipun dengan biaya yang lebih mahal.
Tabel perbandingan biaya pengoperasian pembangkit listrik tenaga nuklir dan batubara untuk beberapa negara maju
Faktor Pencemaran Lingkungan dan Kesehatan
Faktor pokok kedua dari perbandingan ini adalah tentang polusi yang dihasilkan oleh masing-masing pembangkit listrik. Dari data yang ada, pencemaran udara dari batubara adalah jauh lebih besar daripada bahan bakar nuklir, terutama asap dari hasil pembakaran batubara dalam tungku PLTU. Meskipun berdasarka Undang-Undang No. 23/1997 tentang Pengelolaan Lingkungan Hidup setiap PLTU baru diwajibkan untuk memakai “scrubbers” (flue-gas desulphurizer) untuk mengurangi kadar polutan yang dikeluarkannya, PLTU tetap memegang peranan penting datam pencemaran udara secara keseluruhan. Adapun beberapa polutan utama yang dihasilkan dari PLTU adalah sebagai berikut:
    • gas SOx yang dikenal sebagai sumber gangguan paru-paru dan berbagai penyakit pernafasan.

    • gas NOx, yang bersama dengan gas SOx adalah penyebab dari fenomena “hujan asam” yang terjadi di banyak negara maju dan berkembang, terutama yang menggantungkan produksi listriknya dari PLTB. Fenomena ini diperkirakan membawa dampak buruk bagi industri peternakan dan pertanian.

    • gas COx yang membentuk lapisan yang menyelubungi permukaan bumi dan menimbulkan efek rumah kaca (”green-house effect”) yang pada akhirnya menyebabkan pergeseran cuaca yang telah terbukti di beberapa bagian dunia.

    • partikel-partikel debu selain mengadung unsur-unsur radioaktif juga berbahaya bagi kesehatan jika sampai terhirup masuk ke dalam paru-paru.

    • logam-logam berat seperti Pb,Hg,Ar,Ni,Se dan lain-lain, yang terbukti terdapat dengan kadar jauh di atas normal di sekitar PLTU.
Sebagai kondensator dari sikius uap air primer, kedua jenis pembangkit listrik di atas memanfaatkan air dari sumber yang berdekatan dengan lokasinya. Oleh karena itu polusi air yang disebabkan oleh masing-masing kurang lebih berimbang untuk ukuran generator yang sama. Sebuah PLTN rata-rata beroperasi dengan efisiensi panas 33% (40% untuk PLTU). Jadi kurang lebih dua pertiga dari panas yang dihasilkan oleh bahan bakar terpaksa dilepas ke lingkungan meialui sikius pendingin. Untuk sebuah PLT (nuklir atau batubara) dengan ukuran 1.000 MWe yang beroperasi dengan efesiensi 35%, dihasilkan sekitar 1.860 MW sisa panas. Jika air diambil dengan debit 100 m3/s, maka air yang keluar dari sikius sekunder ini akan mengalami kenaikan suhu sekitar 4,5oC, suatu angka yang cukup untuk menggangu kesetimbangan ekosistim dari organisms yang hidup di sumber air tersebut. Dampak ini akan bertambah lagi dengan adanya bahan-bahan kimia pemurni air yang dicampurkan sebelum air tersebut masuk ke siklus pendingin.akan penggunaan energy Batubara setelah proses pembakaran menerapakan teknologi bersih antara lain: Teknologi Denitrifikasi,Teknologi Dedusting,Teknologi Desulfurisasi,Teknologi C2 Removal,Teknologi FBC,Teknologi MHD, dan Teknologi kombinasi IGCC dan Fuel Cell.teknologi-teknologi diatas merupakan teknologi untuk proses pembakaran pada energi batubara sehingga asap yang dihasilkan itu tidak terlalu banyak sehingga tingkat polusi yang disebabkan sedikit.
13170364611841576193
Bertentangan dengan anggapan umum, radiasi sinar-sinar radioaktif (selanjutnya akan disebut radiasi) bukanlah sumber utama polusi pada PLTN. Malah terbukti bahwa secara rata-rata untuk seorang yang tinggal sampai 1 km dari sebuah reaktor nuklir, dosis radiasi yang diterimanya dari bahan-bahan yang dipakai di reaktor tersebut adalah kurang dari 10% dari dosis radiasi alam (dari batuan radioaktif alami, sinar kosmis, sinar-sinar radioaktif untuk maksud-maksud medis) .
Kalau untuk tambang-tambang batubara dikenal istilah “black lung”, dimana partikel batubara yang terh-irup oleh para pekerja tambang mengendap di paru-paru dan menimbulkan berbagai macam gangguan kesehatan, para pekerja di tambang Uranium (bahan utama untuk bahan bakar PLTN) terutama terkena radiasi dari Carbon 14 (C-14) dan gas Radon yang terpancar dari Uranium alam. Dari data statistik didapat bahwa kedua jenis radiasi ini menelan korban jiwa kurang lebih 1 orang tiap 20 juta MWH listrik yang dihasilkan PLTN per tahun. Tetapi karena kedua unsur tersebut mempunyai waktu paruh yang sangat besar, dampaknya akan terus terasa untuk masa-masa yang akan datang. Salah satu pencegahan adalah dengan menempatkan sisa-sisa Uranium tambang di bawah permukaan tanah dimana radiasinya akan ditahan oleh dinding lapisan penyekat khusus, tetapi karena praktek ini juga dilakukan untuk sisa Uranium yang telah tidak mengandung C-14 dan Radon, pada dasarnya belum ada tindakan khusus yang dicanangkan untuk penangangan bahaya dari kedua unsur ini.
Perlu disimak bahwa masalah radiasi bukan semata-mata berlaku untuk PLTN. Misainya untuk kapasitas 1.000MWe, PLTN menghasilkan 50kCi radiasi yang sebagian besar berasal dari gas Xenon dan Krypton sementara PLTU akan mengeluarkan 2Ci radiasi yang keluar dari cerobong asapnya. Meskipun jumlahnya jauh lebih kecil, radiasi dari PLTU mempunyai dampak kesehatan yang lebih besar karena kalau abu tersebut terhisap akan menetap di paru-paru, sumsum tulang atau jaringan yang lain dan merupakan ancaman yang kontinyu sementara radiasi PLTN lebih berupa sinar yang menembus tubuh dan tidak menetap. Pada kedua kasus ini, radiasi yang dihasilkannya masih berada jauh dibawah limit masing-masing.

T.PARABOLA

Energi surya tersedia dalam jumlah luar biasa banyak di seluruh dunia. Berdasarkan studi ilmiah, planet Bumi menerima energi surya 6000 kali lebih banyak daripada yang dikonsumsi oleh 6.8 milliar  manusia saat ini [1].  Artinya jika kita bisa menggunakan 1/6000 saja, dari seluruh potensi energi surya, kita tidak perlu lagi menggunakan bahan bakar fossil apapun. Akan tetapi, untuk mendayagunakan potensi tersebut, masih diperlukan biaya yang sangat mahal.
Pada dasarnya, energi surya dapat digunakan untuk menghasilkan listrik dengan 2 cara. Cara tersebut yakni menggunakan sistem solar thermal atau solar cell. Ditinjau dari kepraktisan, sistem solar cell sangat unggul.  Solar cell bisa menghasilkan listrik langsung dari cahaya matahari tanpa mesin yang bergerak, bising, atau emisi polusi. Sifat lain yang sangat menguntungkan adalah bisa digunakan secara flexible pada berbagai skala. Mulai dari skala lampu senter, sepeda, mobil, rumah sampai sebesar gedung perkantoran atau sekecil kalkulator bisa menggunakan solar cell.  Sayangnya saat ini, rekayasa material solar cell masih cukup mahal dan belum bisa diproduksi secara komersial di dalam negeri.
Pendekatan lain untuk menghasilkan listrik dari energi surya adalah menggunakan sistem solar thermal. Sistem solar thermal menggunakan cahaya matahari untuk menghasilkan panas terlebih dahulu. Setelah panas dihasilkan, baru dapat dikonversi menjadi energi listrik dengan menggunakan turbin dan generator, seperti pada pembangkit listrik PLTU biasa. Saat ini sistem solar thermal sebenarnya masih lebih murah (per energi listrik yang dihasilkan) dibandingkan dengan sistem solar cell. Sayangnya harga yang lebih murah ini hanya bisa dicapai pada skala besar.  Pada sistem solar cell, anda bisa menambahkan panel surya sedikit demi sedikit, sesuai anggaran anda sampai menjadi sistem yang besar. Akan tetapi pada sistem solar thermal, pada umumnya kita harus merencanakan sistem yang besar sekalian (orde MW). Jika dimulai pada skala kecil, sistem solar thermal sangat mahal [1]. Hal ini mengingat bahwa turbin dan generator yang ada di pasaran harus digunakan pada skala daya tertentu (yang cukup besar) baru bisa ekonomis [2]. Sistem besar atau lebih baik tidak sama sekali. Tidak boleh tanggung.
Hal ini berubah dengan diperkenalkannya sistem PLTS Solar Thermal menggunakan mesin Stirling dan reflektor parabola. Mesin Stirling adalah mesin berefisiensi tinggi yang bisa menggunakan panas dari sumber apapun untuk menghasilkan gerakan. Efisiensi mesin Stirling jauh lebih tinggi dibandingkan mesin pembakaran dalam (seperti pada mesin mobil) yang biasa digunakan saat ini. Reflektor parabola adalah cermin cekung yang berfungsi untuk memfokuskan matahari pada mesin Stirling. Bentuk reflektor ini seperti parabola yang biasa digunakan untuk menangkap siaran TV berlangganan.
Gambar 1. Komponen Unit Dasar PLTS Stirling Parabola
Cara kerjanya sebagai berikut:
  1. Sistem kendali mengarahkan parabola ke arah matahari.
  2. Sinar matahari jatuh pada reflektor berbentuk parabola.
  3. Sinar yang jatuh ini dipantulkan ke titik fokus pada “Heat Drive” dimana mesin Stirling diletakkan.
  4. Fokus sinar ini menghasilkan panas yang sangat tinggi.
  5. Panas yang sangat tinggi menggerakkan mesin Stirling. Gerakan mesin Stirling digunakan untuk memutar generator (ada di dalam kotak “Heat Drive” tidak terlihat di gambar) sehingga menghasilkan listrik. Infinia Solar, sebuah perusahaan internasional, berhasil membuat unit kecil dalam skala 3kW. Untuk menghasilkan sistem yang besar, cukup disusun dalam jumlah yang besar seperti terlihat pada gambar di kanan. Hal ini memudahkan konsumen, untuk menghasilkan daya dengan menambah unit PLTS Stirling Parabola sedikit demi sedikit. Hal ini memberikan flexibilitas yang lebih tinggi bagi konsumen untuk membangun sistem yang sesuai kebutuhan mereka.
Gambar 2. Untuk menghasilkan daya besar, cukup menggunakan unit dasar dalam jumlah banyak
Hal lain yang lebih menarik adalah bahwa efisiensi sistem ini bisa mencapai 32-34% jauh lebih tinggi dibandingkan sistem dengan panel surya yang berada pada kisaran 20% dan bahkan lebih murah [1]. Negara berkembang seperti India bahkan yakin bahwa sistem ini juga bisa diproduksi dalam negeri mereka untuk menekan biaya lebih lanjut [2].

T.SEPEDA

Seperti ditulis Ensiklopedia Columbia, nenek moyang sepeda diperkirakan berasal dari Perancis. Menurut kabar sejarah, negeri itu sudah sejak awal abad ke-18 mengenal alat transportasi roda dua yang dinamai velocipede. Bertahun-tahun, velocipede menjadi satu-satunya istilah yang merujuk hasil rancang bangun kendaraan dua roda.
Yang pasti, konstruksinya belum mengenal besi. Modelnya pun masih sangat "primitif". Ada yang bilang tanpa engkol, pedal tongkat kemudi (setang). Ada juga yang bilang sudah mengenal engkol dan setang, tapi konstruksinya dari kayu.
Adalah seorang Jerman bernama Baron Karls Drais von Sauerbronn yang pantas dicatat sebagai salah seorang penyempurna velocipede. Tahun 1818, von Sauerbronn membuat alat transportasi roda dua untuk menunjang efisiensi kerjanya. Sebagai kepala pengawas hutan Baden, ia memang butuh sarana transportasi bermobilitas tinggi. Tapi, model yang dikembangkan tampaknya masih mendua, antara sepeda dan kereta kuda. Sehingga masyarakat menjuluki ciptaan sang Baron sebagai dandy horse.
Baru pada 1839, Kirkpatrick MacMillan, pandai besi kelahiran Skotlandia, membuatkan "mesin" khusus untuk sepeda. Tentu bukan mesin seperti yang dimiliki sepeda motor, tapi lebih mirip pendorong yang diaktifkan engkol, lewat gerakan turun-naik kaki mengayuh pedal. MacMillan pun sudah "berani" menghubungkan engkol tadi dengan tongkat kemudi (setang sederhana).
Sedangkan ensiklopedia Britannica.com mencatat upaya penyempurnaan penemu Perancis, Ernest Michaux pada 1855, dengan membuat pemberat engkol, hingga laju sepeda lebih stabil. Makin sempurna setelah orang Perancis lainnya, Pierre Lallement (1865) memperkuat roda dengan menambahkan lingkaran besi di sekelilingnya (sekarang dikenal sebagai pelek atau velg). Lallement juga yang memperkenalkan sepeda dengan roda depan lebih besar daripada roda belakang.
Namun kemajuan paling signifikan terjadi saat teknologi pembuatan baja berlubang ditemukan, menyusul kian bagusnya teknik penyambungan besi, serta penemuan karet sebagai bahan baku ban. Namun, faktor safety dan kenyamanan tetap belum terpecahkan. Karena teknologi suspensi (per dan sebagainya) belum ditemukan, goyangan dan guncangan sering membuat penunggangnya sakit pinggang. Setengah bercanda, masyarakat menjuluki sepeda Lallement sebagai boneshaker (penggoyang tulang).
Sehingga tidak heran jika di era 1880-an, sepeda tiga roda yang dianggap lebih aman buat wanita dan laki-laki yang kakinya terlalu pendek untuk mengayuh sepeda konvensional menjadi begitu populer. Trend sepeda roda dua kembali mendunia setelah berdirinya pabrik sepeda pertama di Coventry, Inggris pada 1885. Pabrik yang didirikan James Starley ini makin menemukan momentum setelah tahun 1888 John Dunlop menemukan teknologi ban angin. Laju sepeda pun tak lagi berguncang.
Penemuan lainnya, seperti rem, perbandingan gigi yang bisa diganti-ganti, rantai, setang yang bisa digerakkan, dan masih banyak lagi makin menambah daya tarik sepeda. Sejak itu, berjuta-juta orang mulai menjadikan sepeda sebagai alat transportasi, dengan Amerika dan Eropa sebagai pionirnya. Meski lambat laun, perannya mulai disingkirkan mobil dan sepeda motor, sepeda tetap punya pemerhati. Bahkan penggemarnya dikenal sangat fanatik.

[sunting] Jenis-jenis sepeda

Kini sepeda mempunyai beragam nama dan model. Pengelompokan biasanya berdasarkan fungsi dan ukurannya.

  • Sepeda jalan raya-digunakan untuk balap jalan raya, bobot keseluruhan yang ringan, ban halus untuk mengurangi gesekan dengan jalan, kombinasi kecepatan sampai 27
  • Sepeda BMX-BMX merupakan kependekan dari bicycle moto-cross, banyak digunakan untuk atraksi
  • Sepeda mini-termasuk dalam kelompok ini adalah sepeda anak-anak, baik beroda dua maupun beroda tiga
  • Sepeda angkut-termasuk dalam kelompok ini adalah sepeda kumbang, sepeda pos
  • Sepeda lipat-merupakan jenis sepeda yang bisa dilipat dalam hitungan detik sehingga bisa dibawa ke mana-mana dengan mudah
  • Sepeda Balap - Sepeda yang model handlernya setengah lingkaran dan digunakan untuk balapan.
  • Sepeda Motor - bertenaga mesin dengan mengunakan bahan bakar berjenis bensin sebagai sumber daya utamanya. Dengan semakin berkembangnya teknlogi pada industri kendaraan roda dua ini, sepeda motor injeksi pun kini mul

T.MOBIL LISTRIK

Mobil listrik adalah mobil yang digerakkan dengan motor listrik, menggunakan energi listrik yang disimpan dalam baterai atau tempat penyimpan energi lainnya. Mobil listrik sangat populer pada akhir abad ke-19 dan awal abad ke-20, tapi kemudian popularitasnya meredup karena teknologi mesin pembakaran dalam yang semakin maju dan harga kendaraan berbahan bakar bensin yang semakin murah. Krisis energi pada tahun 1970-an dan 1980-an pernah membangkitkan sedikit minat pada mobil-mobil listrik, tapi baru pada tahun 2000-an lah para produsen kendaraan baru menaruh perhatian yang serius pada kendaraan listrik listrik. Hal ini disebabkan karena harga minyak yang melambung tinggi pada tahun 2000-an serta banyak masyarakat dunia yang sudah sadar akan buruknya dampak emisi gas rumah kaca.[1][2] Sampai bulan Novemver 2011, model-model listrik yang tersedia dan dijual di pasaran beberapa negara adalah Tesla Roadster, REVAi, Renault Fluence Z.E., Buddy, Mitsubishi i MiEV, Tazzari Zero, Nissan Leaf, Smart ED, Wheego Whip LiFe, Mia listrik, dan BYD e6. Nissan Leaf, dengan penjualan lebih dari 20.000 unit di seluruh dunia (sampai November 2011),[3] dan Mitsubishi i-MiEV, dengan penjualan global lebih dari 17.000 unit (sampai Oktober 2011), adalah kedua mobil listrik paling laris di dunia.[4]
Mobil listrik memiliki beberapa kelebihan yang potensial jika dibandingkan dengan mobil bermesin pembakaran dalam biasa. Yang paling utama adalah mobil listrik tidak menghasilkan emisi kendaraan bermotor.[5][6][7] Selain itu, mobil jenis ini juga mengurangi emisi gas rumah kaca karena tidak membutuhkan bahan bakar fosil sebagai penggerak utamanya.[1][2] Pada akhirnya, ketergantungan minyak dari luar negeri pun berkurang, karena bagi beberapa negara maju seperti Amerika Serikat dan banyak negara Eropa, kenaikan harga minyak dapat memukul ekonomi mereka.[1][8][9] Bagi negara berkembang, harga minyak yang tinggi semakin memberatkan neraca pembayaran mereka, sehingga menghambat pertumbuhan ekonomi mereka.[10][11]
Meskipun mobil listrik memiliki beberapa keuntungan potensial seperti yang telah disebutkan di atas, tapi penggunaan mobil listrik secara meluas memiliki banyak hambatan dan kekurangan.[1][2] Sampai di tahun 2011, harga mobil listrik masih jauh lebih mahal bila dibandingkan dengan mobil bermesin pembakaran dalam biasa dan kendaraan listrik hibrida karena harga baterai ion litium yang mahal.[12] Meskipun begitu, saat ini harga baterai mulai turun karena mulai diproduksi dalam jumlah besar.[13] Faktor lainnya yang menghambat tumbuhnya penggunaan mobil listrik adalah masih sedikitnya stasiun pengisian untuk mobil listrik, ditambah lagi ketakutan pengendara akan habisnya isi baterai mobil sebelum mereka sampai di tujuan. Beberapa pemerintah di beberapa negara di dunia telah menerbitkan beberapa insentif dan aturan untuk menanggulangi masalah ini, yang tujuannya untuk meningkatkan penjualan mobil listrik, untuk membiayai pengembangan teknologi mobil listrik sehingga harga baterai dan komponen mobil bisa semakin efisien. Pemerintah Amerika Serikat telah memberikan dana hibah sebesar US$2,4 miliar untuk pengembangan mobil listrik dan baterai.[14] Pemerintah China mengumum kan bahwa mereka akan menyediakan dana sebesar US$15 billion untuk memulai industri mobil listrik di negaranya.[15] Beberapa pemerintah lokal dan nasional di banyak negara telah menerbitkan kredit pajak, subsidi, dan banyak insentif lainnya untuk mengurangi harga mobil listrik dan mobil plug-in.[16][17][18][19]

[sunting] Sejarah


Mobil listrik Jerman, 1904, dengan sopir di atas
Mobil listrik populer pada pertengahan abad ke-19 dan awal abad ke-20, ketika listrik masih dipilih sebagai penggerak utama pada kendaraan. Hal ini disebabkan karena mobil listrik menawarkan kenyamanan dan pengoperasian yang mudah yang tidak dapat dicapai oleh kendaraan-kendaraan bermesin bensin saat itu. Perkembangan teknologi pembakaran dalam yang semakin maju, terutama di starter listriknya, lambat laun mengurangi popularitas mobil listrik. Hal ini ditambah dengan kemampuan mobil bensin dapat menempuh jarak yang lebih jauh, pengisiasn bensin yang lebih cepat, dan infrastruktur pengisian semakin bertambah, ditambah dengan sistem produksi massal yang diterapkan oleh Ford Motor Company, membuat harga mobil bensin turun drastis sampai setengah harga mobil listrik. Mobil listrik pun menjadi semakin tidak populer, dan secara total menghilang dari pasaran, terutama di pasaran gemuk seperti Amerika Serikat, di tahun 1930-an. Bagaimanapun juga, di tahun-tahun belakangan ini, semakin banyak orang yang sadar akan dampak lingkungan yang ditimbulkan oleh mobil berbahan bakar bensin, ditambah harga bensin yang mahal dan terus naik, membuat mobil listrik kembali diminati. Mobil listrik jauh lebih ramah lingkungan dari mobil bensin, biaya perawatan lebih murah, ditambah teknologi baterai yang semakin maju. Kekurangannya adalah harga mobil listrik saat ini masih mahal. Mobil listrik saat ini mulai mendapatkan lagi popularitasnya di beberapa negara di dunia setelah sekian lama menghilang.

[sunting] 1890-an sampai 1900-an: Awal sejarah

Sebelum masanya mesin pembakaran dalam, mobil listrik telah memegang banyak rekor kecepatan dan jarak. Diantara semua rekor ini, salah satu yang paling terkenal adalah pemecahan rekor kecepatan 100 km/j (62 mph) oleh Camille Jenatzy pada tanggal 29 April 1899. Ia menggunakan kendaraannya yang berbentuk roket Jamais Contente, dengan kecepatan maksimal 10.588 km/j (6,579 mph). Sebelum tahun 1920-an, mobil listrik bersaing ketat dengan mobil berbahan bakar bensin.[20]

Thomas Edison dan sebuah mobil listrik tahun 1913 (sumber dari National Museum of American History)

Dimulai pada tahun 1896 untuk mengatasi masalah infrastruktur pengisian yang kurang, sebuah jasa pelayanan penggantian baterai dimulai oleh perusahaan Hartford Electric Light Company untuk truk listrik. Pemilik kendaraan membeli kendaraannya dari General Electric Company (GVC) tanpa baterai dan membeli baterainya di Hartford Electric dengan sistem baterai yang dapat diganti-ganti. Pemilik kendaraan akan dikenai biaya servis bulanan dan biaya perjalanan per milnya untuk biaya perawatan truknya. Jasa pelayanan ini tersedia pada tahun 1910 sampai 1924 dan menempuh total jarak sekitar 6 juta mil. Pada tahun 1917, sebuah perusahaan di Chicago menjalankan servis pelayanan serupa untuk pemilik mobil Milburn Light Electric yang juga membeli kendaraannya tanpa baterainya.[21]
Pada tahun 1897, mobil listrik mulai dipakai sebagai kendaraan komersial di Amerika Serikat sebagai armada taksi listrik New York City, taksi ini dibuat oleh Electric Carriage dan Wagon Company Philadelphia. Mobil-mobil listrik di Amerika Serikat diproduksi oleh Anthony Electric, Baker, Columbia, Anderson, Templat:Disambiguation needed, Fritchle, Studebaker, Riker, Milburn, dan beberapa perusahaan lainnya di awal abad ke-20.
Meskipun memiliki kecepatan yang rendah, tapi mobil listrik memiliki banyak kelebihan dibandingkan kompetitornya di awal 1900-an. Mobil listrik tidak menimbulkan getaran, mobil listrik juga tidak mengeluarkan gas buang yang berbau, dan tidak berisik bila dibandingkan dengan mobil bensin. Selain itu, mobil listrik tidak memerlukan perpindahan gigi, dimana pada mobil bensin hal inilah yang menjadi penghambat besar dalam mengemudikannya. Mobil listrik pada masa itu juga digunakan oleh orang-orang kaya yang menggunakannya sebagai mobil kota, sehingga keterbatasan jarak bukanlah hambatan besar. Kelebihan lainnya, mobil listrik juga tidak membutuhkan usaha keras untuk menyalakannya, tidak seperti mobil bensin yang membutuhkan tuas tangan untuk menyalakan mobilnya. Mobil listrik pada masa itu dianggap sebagai mobil yang cocok untuk pengemudi wanita karena kemudahan dalam mengoperasikannya.

Henney Kilowatt, mobil listrik buatan tahun 1961 yang berbasis Renault Dauphine
Pada tahun 1911, New York Times menyatakan bahwa mobil listrik adalah kendaraan "ideal" karena lebih bersih, lebih senyap, dan lebih hemat daripada mobil bensin.[22]

T.MOTOR

Kejuaraan dunia untuk balap motor pertama kali diselenggarakan oleh Fédération Internationale de Motocyclisme (FIM), pada tahun 1949. Pada saat itu secara tradisional telah diselenggarakan beberapa balapan di tiap even untuk berbagai kelas motor, berdasarkan kapasitas mesin, dan kelas untuk sidecars (motor bersespan). Kelas-kelas yang ada saat itu adalah 50 cc, 125 cc, 250 cc, 350 cc, dan 500 cc untuk motor single seater, serta 350 cc dan 500 cc untuk motor sidecars. Memasuki tahun 1950-an dan sepanjang 1960-an, motor bermesin 4 tak mendominasi seluruh kelas. Pada akhir 1960-an, motor bermesin 2 tak mulai menguasai kelas-kelas kecil. Pada tahun 1970-an motor bermesin 2 tak benar-benar menyingkirkan mesin-mesin 4 tak. Pada tahun 1979, Honda berusaha mengembalikan mesin 4 tak di kelas puncak dengan menurunkan motor NR500, namun proyek ini gagal, dan di tahun 1983 Honda bahkan meraih kemenangan dengan motor 500 cc 2 tak miliknya. Pada tahun 1983, kelas 350 cc akhirnya dihapuskan. Kelas 50 cc kemudian digantikan oleh kelas 80 cc di tahun 1984, tetapi kelas yang sering didominasi oleh pembalap dari Spanyol dan Italia ini akhirnya ditiadakan pada tahun 1990. Kelas sidecars juga ditiadakan dari kejuaraan dunia di tahun 1990-an, menyisakan kelas 125 cc, 250 cc, dan kelas 500 cc.
GP 500, kelas yang menjadi puncak balap motor Grand Prix, telah berubah secara dramatis pada tahun 2002. Dari pertengahan tahun 1970-an sampai 2001 kelas puncak dari balap GP ini dibatasi 4 silinder dan kapasitas mesin 500 cc, baik jenis mesin 4 tak ataupun 2 tak. Akibatnya, yang mampu bertahan adalah mesin 2 tak, yang notabene menghasilkan tenaga dan akselerasi yang lebih besar. Pada tahun 2002 sampai 2006 untuk pertama kalinya pabrikan diizinkan untuk memperbesar kapasitas total mesin khusus untuk mesin 4 tak menjadi maksimum 990 cc, dan berubah menjadi 800 cc di musim 2007. Pabrikan juga diberi kebebasan untuk memilih jumlah silinder yang digunakan antara tiga sampai enam dengan batas berat tertentu. Dengan dibolehkannya motor 4 tak ber-cc besar tersebut, kelas GP 500 diubah namanya menjadi MotoGP. Setelah tahun 2003 tidak ada lagi mesin 2 tak yang turun di kelas MotoGP. Untuk kelas 125 cc dan 250 cc secara khusus masih menggunakan mesin 2 tak.
Balap untuk kelas MotoGP saat ini diselenggarakan sebanyak 17 seri di 15 negara yang berbeda (Spanyol menggelar 3 seri balapan). Balapan biasa digelar setiap akhir pekan dengan beberapa tahap. Hari Jum’at digelar latihan bebas dan latihan resmi pertama, kemudian hari Sabtu dilaksanakan latihan resmi kedua dan QTT, di mana para pembalap berusaha membuat catatan waktu terbaik untuk menentukan posisi start mereka. Balapan sendiri digelar pada hari Minggu, meskipun ada seri yang digelar hari Sabtu yaitu di Belanda dan Qatar. Grid (baris posisi start) terdiri dari 3 pembalap perbaris dan biasanya setiap seri balap diikuti oleh sekitar 20 pembalap. Balapan dilaksanakan selama sekitar 45 menit dan pembalap berlomba sepanjang jumlah putaran yang ditentukan, tanpa masuk pit untuk mengganti ban atau mengisi bahan bakar. Balapan akan diulang jika terjadi kecelakaan fatal di awal balapan. Susunan grid tidak berubah sesuai hasil kualifikasi. Pembalap boleh masuk pit jika hanya untuk mengganti motor karena hujan saat balapan.

[sunting] Organisasi dalam MotoGP

Kesuksesan Balap MotoGP tidak terlepas dari organisasi-organisasi yang terlibat di dalamnya Beberapa organisasi yang tergabung dalam komisi Grand Prix antara lain FIM, Dorna, IRTA, dan MSMA.
FIM (Federation Internationale de Motocyclisme) merupakan badan tertinggi di dunia yang mengurusi hal-hal seputar sepeda motor. FIM yang berdiri pada tahun 1904 ini tidak hanya mengurusi balap motor, tetapi juga menjadi pengawas motor-motor produksi yang dijual masal, terutama soal keamanan dan kelayakan. Dalam kegiatan balap motor, FIM adalah badan yang mengurusi dan bertanggung jawab mengenai regulasi dan teknis pelaksanaan balapan, juga mengenai status, taraf, dan kriteria dari sebuah kejuaraan balap motor.
Dorna adalah organisasi penyelenggara balapan MotoGP, atau dengan kata lain Dorna adalah promotor kejuaraan MotoGP. Dorna bertanggung jawab terhadap kualitas event dan juga mengurusi sponsor event.
IRTA (International Road racing Team Association), anggota organisasi ini terdiri dari tim-tim yang mengikuti balapan MotoGP. Organisasi ini berfungsi untuk menyalurkan aspirasi tim dan para pembalap yang tergabung di dalamnya. Dengan organisasi inilah pembalap dapat memberikan masukan dan menentukan hak-hak dan kepentingannya, antara lain nilai kontrak, keamanan dan kelayakan sirkuit.
MSMA (Motor Sport Manufacturer Association) merupakan organisasi dalam MotoGP yang terdiri dari pabrikan-pabrikan motor yang mengikuti kejuaraan MotoGP, seperti Honda, Yamaha, Ducati, Suzuki, Kawasaki, dan pabrikan lainnya. Fungsi dari organisasi ini antara lain memutuskan peraturan teknis mengenai regulasi motor bersama dengan organisasi lain yang tergabung di komisi Grand Prix.

[sunting] Karier Pembalap

Terdapat penjenjangan karier bagi para pembalap yang turun di balap motor dunia, apabila seorang pembalap cukup berprestasi ia akan direkrut oleh tim yang ada dikelas berikutnya dari kelas 125 cc, kelas 250 cc, kemudian kelas puncak MotoGP. Pembalap yang turun di kelas 125 cc sendiri berasal dari pembalap yang berprestasi di kejuaraan regional atau nasional di negaranya masing-masing, seperti All Japan road racing di Jepang, ataupun kejuaraan Eropa.
Para pembalap yang turun di kelas puncak MotoGp berasal dari beberapa kejuaraan. Selain berasal dari kelas 250 cc seperti Valentino Rossi,Marco Melandri, Daniel Pedrosa, ada pula pembalap yang berasal dari AMA Superbike seperti Nicky Hayden, dari British Superbike seperti Shane Byrne, juga dari World Superbike seperti Noriyuki Haga, Colin Edwards, Troy Bayliss, Neil Hodgson, Ruben Xaus dan Chris Vermeulen. Banyaknya para pembalap yang berasal dari superbike ini tidak terlepas dari berubahnya kelas puncak GP motor yang membolehkan penggunaan motor bermesin 4 tak 990 cc pada tahun 2002, setelah sebelumnya hanya mesin 2 tak 500 cc yang boleh digunakan.

[sunting] Spesifikasi


Mesin YZR-M1 empat silinder (empat tak) di acara Tokyo Motor Show 2009.
Setiap peraturan mengenai tiap-tiap kelas balapan dibentuk oleh FIM sebagai organisasi yang berwenang melakukannya. FIM membentuk dan mengeluarkan peraturan-peraturan baru yang dipandang sesuai dengan perkembangan balapan. Pada permulaan era baru MotoGP di tahun 2002, motor bermesin 2 tak 500 cc dan 4 tak 990 cc dibolehkan untuk digunakan dalam balapan. Kedahsyatan tenaga dari motor bermesin 4 tak yang mengungguli motor bermesin 2 tak menyingkirkan seluruh mesin 2 tak dari persaingan, dan musim-musim balap selanjutnya tidak ada lagi motor 2 tak yang digunakan.
Pada tahun 2007, FIM akan memberlakukan peraturan baru bahwa motor-motor MotoGP akan dibatasi menjadi 4 tak 800 cc. Alasan yang dikemukakan dari pengurangan kapasitas silinder mesin ini adalah untuk meningkatkan keamanan pembalap, mengingat tenaga dan kecepatan puncak yang dihasilkan mesin-mesin MotoGP telah meningkat secara drastis sejak 2002. Rekor kecepatan MotoGP saat ini adalah 347,4 km/jam yang dicetak oleh Loris Capirossi dengan motor Ducati di sirkuit Catalunya, Barcelona pada tahun 2004. Sebagai perbandingan rekor kecepatan F1 saat ini adalah 369,9 km/jam yang dicetak oleh Antonio Pizonia dengan mobil BMW, di sirkuit Monza di tahun 2004.
Keputusan pilihan untuk membatasi kapasitas mesin menjadi 800 cc (daripada dengan metode pembatasan tenaga lain, seperti pengurangan jumlah gir transmisi yang diizinkan) menurut para pengamat MotoGP sangat menguntungkan Honda. Honda menggunakan mesin lima silinder, dan hanya perlu mengurangi satu silinder untuk membenahi mesin mereka agar sesuai regulasi yang baru, sementara pabrikan lainnya harus mendesain ulang seluruh mesin mereka. Pembatasan menjadi 800 cc juga menimbulkan kontroversi bahwa sepertinya saat ini motor yang digunakan dalam kejuaraan Superbike 1000 cc menjadi yang tercepat dalam balapan motor sirkuit di seluruh dunia.
Mesin yang digunakan dalam kelas 125 cc dibatasi sebanyak satu silinder dan dengan berat minimal 80 kilogram, sementara untuk kelas 250 cc dibatasi sebanyak dua silinder dengan berat minimal 100 kilogram.
Motor-motor untuk kelas MotoGP dibolehkan menggunakan mesin dengan jumlah silinder antara tiga sampai enam silinder, dan terdapat variasi dalam pembatasan berat tergantung jumlah silinder yang digunakan. Ini disebabkan sebuah mesin dengan silinder yang lebih banyak, tenaga yang dihasilkan juga lebih besar, dan batasan berat meningkat. Pada tahun 2006 mesin-mesin yang digunakan di MotoGP adalah mesin empat dan lima silinder. Honda menggunakan lima silinder, sementara Yamaha, Ducati, Kawasaki, dan Suzuki menggunakan empat silinder.
Motor-motor yang digunakan dalam Grandprix motor dibuat tidak hanya untuk balapan saja, tetapi juga sebagai ajang unjuk kekuatan dan kemajuan teknologi antar pabrikan. Sebagai hasilnya seluruh mesin-mesin MotoGP dibuat dengan menggunakan material yang sangat mahal dan ringan seperti titanium, dan carbon-fiber-reinforced plastic. Motor-motor tersebut juga menggunakan teknologi yang tidak tersedia untuk konsumsi umum, misalnya adalah perangkat elektronik yang canggih termasuk telemetri, engine management systems, kontrol traksi, rem cakram karbon, dan teknologi mesin modern yang diadopsi dari teknologi mesin mobil F1.
Jika motor-motor yang dipakai di kelas MotoGP hanya dilombakan di tingkat kejuaraan dunia, motor-motor yang digunakan di kelas 125 cc dan 250 cc relatif lebih terjangkau. Harga sebuah motor 125 cc kurang lebih sama dengan sebuah mobil. Motor-motor ini sering digunakan dalam kejuaraan balap motor nasional di seluruh dunia.
Satu dari beberapa tantangan utama yang dihadapi para pembalap MotoGP dan Insinyur motor MotoGP adalah bagaimana untuk menyalurkan tenaga mesin yang luar biasa – lebih dari 240 dk (179 kW), melalui titik kontak dua buah ban dan permukaan aspal sirkuit dengan lebar hanya sekitar lengan manusia. Sebagai perbandingan mobil F1 menghasilkan lebih dari 950 dk (700 kW) tetapi dengan empat buah ban, sehingga memiliki titik kontak permukaan dengan aspal sepuluh kali lebih lebar dari motor MotoGP.